Studies on Glycosaminoglycans Isolated from Bivalves Molluscs Tridacna maxima and Perna viridis

M. Arumugam, T. Balasubramanian, M. Warda, R.J. Linhardt

Abstract


The glycosaminoglycans (GAGs) in two marine invertebrate molluscs such as Tridacna maxima and Perna viridis were analyzed. Both the species was found to contain variable amounts of GAGs in the form of heparin biomolecules as identified by metachromatic activity and agarose gel electrophoresis analysis. Anticoagulant property of the biomolecules was assessed by anti factor Xa activity. Their molecular weight was estimated as 15000 and 9000 Daltons through GPC-HPLC. The 1HNMR analysis of heparin was used to predict binding sites of the heparin. Structural characterization studies clearly demonstrated that heparin is the major GAGs constituents in the test animals.
Key words: Anticoagulant, Bivalves molluscs, Glycosaminoglycans, Heparin, Invertebrates
DOI: 10.3126/on.v7i1.2548
Our Nature (2009) 7:10-17

References



Full Text: PDF

Our Nature ISSN: 1991-2951
NepJOL is supported by INASP

Performance of Cordyceps militaris Mutant Regarding Anti-cancer Agent Cordycepin Production in Submerged Culture Obtained by Ion Beam Irradiation

S.K. Das, M. Masuda, M. Hatashita, A. Sakurai, M. Sakakibara

Abstract


Performance of Cordyceps militaris mutant obtained by high-energy ion beam irradiation regarding anti-cancer agent cordycepin production in submerged culture was investigated. It was established that the mutant renders a higher production performance in surface liquid culture, needs to observe its performance in submerged culture. Two kinds of media were used for submerged culture comprising a basal medium and the optimized media for C. militaris mutant and control (wild strain) each. HPLC analysis for cordycepin concentration, mutarotase GOD (glucose oxidase) method using Glucose CII test for glucose concentration, pH meter for pH were measured. Analysis showed that the cordycepin production of mutant in submerged culture using basal medium was 2.82 times (181.77%) higher that of the control; whereas, in optimized media, the production of control was 9.06 times (806.25%) higher than that of the mutant. In contrast, the cordycepin productions of this mutant in submerged culture were suppressed to about 80% and 3% relative to the surface liquid culture; whereas, those controls were about 30% and 80% using basal and optimized media, respectively. Glucose consumption was faster in all cases of the control in both basal and optimized media with a higher mycelial growth, and interestingly, it was extremely slow in case of mutant in optimized medium. The pH analysis showed that as the production was increasing, the pH value also increasing towards the neutral (pH= 7) in all the cases of mutant and control, except in case of mutant using optimized medium in which the pH value remained more or less static accompanied by a lower production. These results suggested that the prospective mutant had a poor performance in submerged culture using optimized media, but had a better performance in basal medium, although the production in basal medium is too low to be taken into consideration as a commercial point of view. Stress furnished by shaking may be one of the major explainable causes of decreased production here. It my also be assumed that with a lower concentrations of C and N sources, this mutant is better tolerable to shear stress. Therefore, it is suggested to use surface liquid culture rather than the submerged one to attain the highest production performance to be used for industrial uses.
Key words: Production performance, Cordyceps militaris mutant, submerged culture, anticancer agent production
DOI: 10.3126/on.v7i1.2547
Our Nature (2009) 7:1-9

Anatomy and physiology

Posted on 3:03 PM In:

Anatomy and physiology


External anatomy of a bird: 1 Beak, 2 Head, 3 Iris, 4 Pupil, 5 Mantle, 6 Lesser coverts, 7 Scapulars, 8 Median coverts, 9 Tertials, 10 Rump, 11 Primaries, 12 Vent, 13 Thigh, 14 Tibio-tarsal articulation, 15 Tarsus, 16 Foot, 17 Tibia, 18 Belly, 19 Flanks, 20 Breast, 21 Throat, 22 Wattle
Compared with other vertebrates, birds have a body plan that shows many unusual adaptations, mostly to facilitate flight.
The skeleton consists of very lightweight bones. They have large air-filled cavities (called pneumatic cavities) which connect with the respiratory system.[38] The skull bones in adults are fused and do not show cranial sutures.[39] The orbits are large and separated by a bony septum. The spine has cervical, thoracic, lumbar and caudal regions with the number of cervical (neck) vertebrae highly variable and especially flexible, but movement is reduced in the anterior thoracic vertebrae and absent in the later vertebrae.[40] The last few are fused with the pelvis to form thesynsacrum.[39] The ribs are flattened and the sternum is keeled for the attachment of flight muscles except in the flightless bird orders. The forelimbs are modified into wings.[41]
Like the reptiles, birds are primarily uricotelic, that is, their kidneys extract nitrogenous wastes from their bloodstream and excrete it as uric acid instead of ureaor ammonia via the ureters into the intestine. Birds do not have a urinary bladder or external urethral opening and (with exception of the Ostrich) uric acid is excreted along with feces as a semisolid waste. However, birds such as hummingbirds can be facultatively ammonotelic, excreting most of the nitrogenous wastes as ammonia.[45] They also excrete creatine, rather than creatinine like mammals. This material, as well as the output of the intestines, emerges from the bird's cloaca. The cloaca is a multi-purpose opening: waste is expelled through it, birds mate by joining cloaca, and females lay eggs from it. In addition, many species of birds regurgitate pellets. The digestive system of birds is unique, with a crop for storage and a gizzard that contains swallowed stones for grinding food to compensate for the lack of teeth.[49] Most birds are highly adapted for rapid digestion to aid with flight.[50] Some migratory birds have adapted to use protein from many parts of their bodies, including protein from the intestines, as additional energy during migration.
Birds have one of the most complex respiratory systems of all animal groups. Upon inhalation, 75% of the fresh air bypasses the lungs and flows directly into a posterior air sac which extends from the lungs and connects with air spaces in the bones and fills them with air. The other 25% of the air goes directly into the lungs. When the bird exhales, the used air flows out of the lung and the stored fresh air from the posterior air sac is simultaneously forced into the lungs. Thus, a bird's lungs receive a constant supply of fresh air during both inhalation and exhalation.[52] Sound production is achieved using the syrinx, a muscular chamber incorporating multiple tympanic membranes which diverges from the lower end of the trachea.[53] The bird's heart has four chambers and the right aortic arch gives rise to systemic circulation(unlike in the mammals where the left arch is involved).[39] The postcava receives blood from the limbs via the renal portal system. Unlike in mammals, the red blood cells in birds have a nucleus.[54]

The nictitating membrane as it covers the eye of a Masked Lapwing
The nervous system is large relative to the bird's size.[39] The most developed part of the brain is the one that controls the flight-related functions, while the cerebellumcoordinates movement and the cerebrum controls behaviour patterns, navigation, mating and nest building. Most birds have a poor sense of smell with notable exceptions including kiwis,[55] New World vultures[56] and tubenoses.[57] The avianvisual system is usually highly developed. Water birds have special flexible lenses, allowing accommodation for vision in air and water.[39] Some species also have dualfovea. Birds are tetrachromatic, possessing ultraviolet (UV) sensitive cone cells in the eye as well as green, red and blue ones.[58] This allows them to perceive ultraviolet light, which is involved in courtship. Many birds show plumage patterns in ultraviolet that are invisible to the human eye; some birds whose sexes appear similar to the naked eye are distinguished by the presence of ultraviolet reflective patches on their feathers. Male Blue Tits have an ultraviolet reflective crown patch which is displayed in courtship by posturing and raising of their nape feathers.[59] Ultraviolet light is also used in foraging—kestrels have been shown to search for prey by detecting the UV reflective urine trail marks left on the ground by rodents.[60] The eyelids of a bird are not used in blinking. Instead the eye is lubricated by the nictitating membrane, a third eyelid that moves horizontally.[61] The nictitating membrane also covers the eye and acts as a contact lens in many aquatic birds.[39] The bird retina has a fan shaped blood supply system called the pecten.[39] Most birds cannot move their eyes, although there are exceptions, such as the Great Cormorant.[62] Birds with eyes on the sides of their heads have a wide visual field, while birds with eyes on the front of their heads, such as owls, have binocular vision and can estimate the depth of field.[63] The avian ear lacks external pinnae but is covered by feathers, although in some birds, such as the AsioBubo and Otus owls, these feathers form tufts which resemble ears. The inner ear has a cochlea, but it is not spiral as in mammals.[64]
A few species are able to use chemical defenses against predators; some Procellariiformes can eject an unpleasant oil against an aggressor,[65] and some species of pitohuis from New Guinea have a powerful neurotoxin in their skin and feathers.[66]

Distribution

Posted on 12:42 PM In:

Distribution

 small bird withpale belly and breast and patterned wing and head stands on concrete
The range of the House Sparrow has expanded dramatically due to human activities.[28]
Birds live and breed in most terrestrial habitats and on all seven continents, reaching their southern extreme in the Snow Petrel's breeding colonies up to 440 kilometres (270 mi) inland in Antarctica.[29] The highest bird diversity occurs in tropical regions. It was earlier thought that this high diversity was the result of higher speciation rates in the tropics, however recent studies found higher speciation rates in the high latitudes that were offset by greater extinction rates than in the tropics.[30] Several families of birds have adapted to life both on the world's oceans and in them, with some seabird species coming ashore only to breed[31] and some penguins have been recorded diving up to 300 metres (980 ft).
Many bird species have established breeding populations in areas to which they have been introduced by humans. Some of these introductions have been deliberate; the Ring-necked Pheasant, for example, has been introduced around the world as a game bird. Others have been accidental, such as the establishment of wild Monk Parakeets in several North American cities after their escape from captivity.[34] Some species, including Cattle Egret,[35] Yellow-headed Caracara[36] and Galah,[37] have spread naturally far beyond their original ranges as agricultural practices created suitable new habitat.

Dinosaurs and the origin of birds

Posted on 12:38 PM In:

Dinosaurs and the origin of birds

 White slab of rock left with cracks and impression of bird feathers and bone, including long paired tail feathers
Confuciusornis, a Cretaceous bird from China
Based on fossil and biological evidence, most scientists accept that birds are a specialized sub-group of theropod dinosaurs.[10] More specifically, they are members of Maniraptora, a group of theropods which includes dromaeosaurs and oviraptorids, among others.[11] As scientists discover more non-avian theropods that are closely related to birds, the previously clear distinction between non-birds and birds has become blurred. Recent discoveries in the Liaoning Province of northeast China, which demonstrate that many small theropod dinosaurs had feathers, contribute to this ambiguity.[12]
The consensus view in contemporary paleontology is that the birds, Aves, are the closest relatives of the deinonychosaurs, which include dromaeosaurids and troodontids. Together, these three form a group called Paraves. The basal dromaeosaur Microraptor has features which may have enabled it to glide or fly. The most basal deinonychosaurs are very small. This evidence raises the possibility that the ancestor of all paravians may have been arboreal, may have been able to glide, or both.
The Late Jurassic Archaeopteryx is well-known as one of the first transitional fossils to be found and it provided support for the theory of evolution in the late 19th century. Archaeopteryx has clearly reptilian characteristics: teeth, clawed fingers, and a long, lizard-like tail, but it has finely preserved wings with flight feathers identical to those of modern birds. It is not considered a direct ancestor of modern birds, but is the oldest and most primitive known member of Aves or Avialae, and it is probably closely related to the real ancestor.

Evolution and taxonomy

Posted on 12:36 PM In:

Evolution and taxonomy

 Slab of stone with fossil bones and feather impressions
Archaeopteryx, the earliest known bird
The first classification of birds was developed by Francis Willughby and John Ray in their 1676 volume Ornithologiae.[2] Carolus Linnaeus modified that work in 1758 to devise the taxonomic classification system currently in use.[3] Birds are categorised as the biological class Aves in Linnaean taxonomy. Phylogenetic taxonomy places Aves in the dinosaur clade Theropoda.[4] Aves and a sister group, the clade Crocodilia, contain the only living representatives of the reptile clade Archosauria. Phylogenetically, Aves is commonly defined as all descendants of the most recent common ancestor of modern birds and Archaeopteryx lithographica.[5]
Archaeopteryx, from the Tithonian stage of the Late Jurassic (some 150–145 million years ago), is the earliest known bird under this definition. Others, including Jacques Gauthier and adherents of the Phylocodecrown group. This has been done by excluding most groups known only from fossils, and assigning them, instead, to the Avialae[6] in part to avoid the uncertainties about the placement of Archaeopteryx in relation to animals traditionally thought of as theropod dinosaurs. system, have defined Aves to include only the modern bird groups, the
All modern birds lie within the subclass Neornithes, which has two subdivisions: the Palaeognathae, containing birds that are flightless (like ostriches) or weak fliers, and the wildly diverse Neognathae, containing all other birds.[4] These two subdivisions are often given the rank of superorder,[7] although Livezey and Zusi assigned them "cohort" rank.[4] Depending on the taxonomic viewpoint, the number of known living bird species varies anywhere from 9,800[8] to 10,050.[9]

Bird (disambiguation)

Posted on 11:38 AM In:
Bird (disambiguation)
This audio file was created from a revision of Bird dated 2008-01-05, and does not reflect subsequent edits to the article. (Audio help)
More spoken articles


Birds (class Aves) are winged, bipedal, endothermic (warm-blooded), egg-laying, vertebrate animals. There are around 10,000 living species, making them the most varied of tetrapod vertebrates. They inhabit ecosystems across the globe, from the Arctic to the Antarctic. Extant birds range in size from the 5 cm (2 in) Bee Hummingbird to the 2.75 m (9 ft) Ostrich. The fossil record indicates that birds evolved from theropod dinosaurs during the Jurassic period, around 150–200 Ma (million years ago), and the earliest known bird is the Late Jurassic Archaeopteryx, c 150–145 Ma. Most paleontologists regard birds as the only clade of dinosaurs to have survived the Cretaceous–Tertiary extinction event approximately 65.5 Ma.

Modern birds are characterised by feathers, a beak with no teeth, the laying of hard-shelled eggs, a high metabolic rate, a four-chambered heart, and a lightweight but strong skeleton. All living species of birds have wings - the now extinct flightless Moa of New Zealand were the only exceptions. Wings are evolved forelimbs, and most bird species can fly, with some exceptions including ratites, penguins, and a number of diverse endemic island species. Birds also have unique digestive and respiratory systems that are highly adapted for flight. Some birds, especially corvids and parrots, are among the most intelligent animal species; a number of bird species have been observed manufacturing and using tools, and many social species exhibit cultural transmission of knowledge across generations.

Many species undertake long distance annual migrations, and many more perform shorter irregular movements. Birds are social; they communicate using visual signals and through calls and songs, and participate in social behaviours including cooperative breeding and hunting, flocking, and mobbing of predators. The vast majority of bird species are socially monogamous, usually for one breeding season at a time, sometimes for years, but rarely for life. Other species have breeding systems that are polygynous ("many females") or, rarely, polyandrous ("many males"). Eggs are usually laid in a nest and incubated by the parents. Most birds have an extended period of parental care after hatching.

Many species are of economic importance, mostly as sources of food acquired through hunting or farming. Some species, particularly songbirds and parrots, are popular as pets. Other uses include the harvesting of guano (droppings) for use as a fertiliser. Birds figure prominently in all aspects of human culture from religion to poetry to popular music. About 120–130 species have become extinct as a result of human activity since the 17th century, and hundreds more before then. Currently about 1,200 species of birds are threatened with extinction by human activities, though efforts are underway to protect them.