Soil

From Wikipedia, the free encyclopedia
This is a diagram and related photograph of soil layers from bedrock to soil.
A represents soil; B represents laterite, aregolith; C represents saprolite, a less-weathered regolith; the bottommost layer represents bedrock

Loess field in Germany.

Surface-water-gley developed in glacial till, Northern Ireland
Soil is a natural body consisting of layers (soil horizons) of mineral constituents of variable thicknesses, which differ from the parent materials in their morphological, physical, chemical, andmineralogical characteristics.[1] It is composed of particles of broken rock that have been altered by chemical and environmental processes that include weathering and erosion. Soil differs from its parent rock due to interactions between the lithosphere, hydrosphere, atmosphere, and thebiosphere.[2] It is a mixture of mineral and organic constituents that are in solid, gaseous and aqueous states.[3][4]
Soil particles pack loosely, forming a soil structure filled with pore spaces. These pores contain soil solution (liquid) and air (gas).[5] Accordingly, soils are often treated as a three state system.[6]Most soils have a density between 1 and 2 g/cm³.[7] Soil is also known as earth: it is the substance from which our planet takes its name. Little of the soil composition of planet Earth is older than the Tertiary and most no older than the Pleistocene.[8] In engineering, soil is referred to as regolith, or loose rock material.
undefined
Darkened topsoil and reddish subsoillayers are typical in some regions.

Contents

 [hide]
  • 1 Soil forming factors
    • 1.1 Parent material
    • 1.2 Climate
    • 1.3 Biological factors
    • 1.4 Time
  • 2 Characteristics
  • 3 Soil horizons
  • 4 Classification
    • 4.1 Orders
  • 5 Organic matter
    • 5.1 Humus
    • 5.2 Climate and organics
  • 6 Soil solutions
    • 6.1 In nature
  • 7 Uses
  • 8 Degradation
  • 9 See also
  • 10 References
  • 11 Further reading
  • 12 External links

[edit]Soil forming factors

Soil formation, or pathogenesis, is the combined effect of physical, chemical, biological, and anthropogenic processes on soil parent material. Soil genesis involves processes that develop layers or horizons in the soil profile. These processes involve additions, losses, transformations and trans locations of material that compose the soil. Minerals derived from weathered rocks undergo changes that cause the formation of secondary minerals and other compounds that are variably soluble in water, these constituents are moved (trans located) from one area of the soil to other areas by water and animal activity. The alteration and movement of materials within soil causes the formation of distinctive soil horizons.
The weathering of bedrock produces the parent material from which soils form. An example of soil development from bare rock occurs on recent lava flows in warm regions under heavy and very frequent rainfall. In such climates, plants become established very quickly on basaltic lava, even though there is very little organic material. The plants are supported by the porous rock as it is filled with nutrient-bearing water which carries, for example, dissolved minerals and guano. The developing plant roots, themselves or associated with mycorrhizal fungi,[9] gradually break up the porous lava and organic matter soon accumulates.
But even before it does, the predominantly porous broken lava in which the plant roots grow can be considered a soil. How the soil "life" cycle proceeds is influenced by at least five classic soil forming factors that are dynamically intertwined in shaping the way soil is developed, they include: parent material, regional climate, topography, biotic potential and the passage of time.[10]

Time

Time is a factor in the interactions of all the above factors as they develop soil. Over time, soils evolve features dependent on the other forming factors, and soil formation is a time-responsive process dependent on how the other factors interplay with each other. Soil is always changing. For example, recently-deposited material from a flood exhibits no soil development because there has not been enough time for soil-forming activities. The soil surface is buried, and the formation process begins again for this soil. The long periods over which change occurs and its multiple influences mean that simple soils are rare, resulting in the formation of soil horizons. While soil can achieve relative stability in properties for extended periods, the soil life cycle ultimately ends in soil conditions that leave it vulnerable to erosion. Despite the inevitability of soil retrogression and degradation, most soil cycles are long and productive.
Soil-forming factors continue to affect soils during their existence, even on “stable” landscapes that are long-enduring, some for millions of years. Materials are deposited on top and materials are blown or washed away from the surface. With additions, removals and alterations, soils are always subject to new conditions. Whether these are slow or rapid changes depend on climate, landscape position and biological activity.

Soil horizons

The naming of soil horizons is based on the type of material the horizons are composed of; these materials reflect the duration of the specific processes used in soil formation. They are labeled using a short hand notation of letters and numbers.[20] They are described and classified by their color, size, texture, structure, consistency, root quantity, pH, voids, boundary characteristics, and if they have nodules or concretions.[21] Any one soil profile does not have all the major horizons covered below; soils may have few or many horizons.
The exposure of parent material to favorable conditions produces initial soils that are suitable for plant growth. Plant growth often results in the accumulation of organic residues, the accumulated organic layer is called the O horizon. Biological organisms colonize and break down organic materials, making available nutrients that other plants and animals can live on. After sufficient time a distinctive organic surface layer forms with humus which is called the A horizon.

Classification

Soil is classified into categories in order to understand relationships between different soils and to determine the usefulness of a soil for a particular use. One of the first classification systems was developed by the Russian scientist Dokuchaev around 1880. It was modified a number of times by American and European researchers, and developed into the system commonly used until the 1960s. It was based on the idea that soils have a particular morphology based on the materials and factors that form them. In the 1960s, a different classification system began to emerge, that focused on soil morphology instead of parental materials and soil-forming factors. Since then it has undergone further modifications. The World Reference Base for Soil Resources (WEB)[22] aims to establish an international reference base for soil classification.

Organic matter

Most living things in soils, including plants, insects, bacteria and fungi, are dependent on organic matter for nutrients and energy. Soils often have varying degrees of organic compounds in different states of decomposition. Many soils, including desert and rocky-gravel soils, have no or little organic matter. Soils that are all organic matter, such as peat (histosols), are infertile.[24]

Climate and organics

The production and accumulation or degradation of organic matter and humus is greatly dependent on climate conditions. Temperature and soil moisture are the major factors in the formation or degradation of organic matter, they along with topography, determine the formation of organic soils. Soils high in organic matter tend to form under wet or cold conditions where decomposer activity is impeded by low temperature[29] or excess moisture.[30]
 

Soil solutions

Soils retain water that can dissolve a range of molecules and ions. These solutions exchange gases with the soil atmosphere, contain dissolved sugars, fulvic acids and other organic acids, plant nutrients such as nitrate, ammonium, potassium, phosphate, sulfate and calcium, and micronutrients such as zinc, iron and copper. Some arid soils have sodium solutions that greatly impact plant growth. Soil pH can affect the type and amount of anions and cations that soil solutions contain and that exchange with the soil atmosphere and biological organisms.[31

In nature

Biogeography is the study of special variations in biological communities. Soils are a restricting factor as to which plants can grow in which environments. Soil scientists survey soils in the hope of understanding controls as to what vegetation can and will grow in a particular location.
Geologists also have a particular interest in the patterns of soil on the surface of the earth. Soil texture, color and chemistry often reflect the underlying geologic parent material, and soil types often change at geologic unit boundaries. Buried paleosols mark previous land surfaces and record climatic conditions from previous eras. Geologists use this paleopedological record to understand the ecological relationships in past ecosystems. According to the theory of biorhexistasy, prolonged conditions conducive to forming deep, weathered soils result in increasing ocean salinity and the formation of limestone.
Geologists use soil profile features to establish the duration of surface stability in the context of geologic faults or slope stability. An offset subsoil horizon indicates rupture during soil formation and the degree of subsequent subsoil formation is relied upon to establish time since rupture.
A homeowner tests soil to apply only the nutrients needed.
Due to their thermal mass, rammed earth walls fit in with environmental sustainability aspirations.


Soil examined in shovel test pits is used by archaeologists for relative dating based on stenography (as opposed to absolute dating). What is considered most typical is to use soil profile features to determine the maximum reasonable pit depth than needs to be examined for archaeological evidence in the interest of cultural resources management.
Soils altered or formed by man (anthropic and anthropogenic soils) are also of interest to archaeologists, such as terra preta soils.

Uses

Soil is used in agriculture, where it serves as the primary nutrient base for plants; however, as demonstrated by hydroponics, it is not essential to plant growth if the soil-contained nutrients could be dissolved in a solution. The types of soil used in agriculture (among other things, such as the purported level of moisture in the soil) vary with respect to the species of plants that are cultivated.
Soil material is a critical component in the mining and construction industries. Soil serves as a foundation for most construction projects. Massive volumes of soil can be involved in surface mining, road building and dam construction. Earth sheltering is the architectural practice of using soil for external thermal mass against building walls.
Soil resources are critical to the environment, as well as to food and fiber production. Soil provides minerals and water to plants. Soil absorbs rainwater and releases it later, thus preventing floods and drought. Soil cleans the water as it percolates. Soil is the habitat for many organisms: the major part of known and unknown biodiversity is in the soil, in the form ofinvertebrates (earthworms, woodlice, millipedes, centipedes, snails, slugs, mites, springtails, enchytraeids, nematodes, protists), bacteria, archaea, fungi and algae; and most organisms living above ground have part of them (plants) or spend part of their life cycle (insects) belowground. Above-ground and below-ground biodiversities are tightly interconnected,[32][33] making soil protection of paramount importance for any restoration or conservation plan.
The biological component of soil is an extremely important carbon sink since about 57% of the biotic content is carbon. Even on desert crusts, cyanobacteria lichens and mosses capture and sequester a significant amount of carbon by photosynthesis. Poor farming and grazing methods have degraded soils and released much of this sequestered carbon to the atmosphere. Restoring the world's soils could offset some of the huge increase in greenhouse gases causing global warming while improving crop yields and reducing water needs.
Waste management often has a soil component. Septic drain fields treat septic tank effluent using aerobic soil processes. Landfills use soil for daily cover. Land application of wastewater relies on soil biology to aerobically treat BOD.
Organic soils, especially peat, serve as a significant fuel resource; but wide areas of peat production, such as sphagnum bogs, are now protected because of patrimonial interest.
Both animals and humans in many cultures occasionally consume soil. It has been shown that some monkeys consume soil, together with their preferred food (tree foliage and fruits), in order to alleviate tannin toxicity.
Soils filter and purify water and affect its chemistry. Rain water and pooled water from ponds, lakes and rivers percolate through the soil horizons and the upper rock strata; thus becoming groundwater. Pests (viruses) and pollutants, such as persistent organic pollutants (chlorinatedpesticides, polychlorinated biphenyls), oils (hydrocarbons), heavy metals (lead, zinc, cadmium), and excess nutrients (nitrates, sulfates, phosphates) are filtered out by the soil.[38] Soil organisms metabolize them or immobilize them in their biomass and necromass,[39] thereby incorporating them into stable humus.[40] The physical integrity of soil is also a prerequisite for avoiding landslides in rugged landscapes.